Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20241674

ABSTRACT

Dengue virus (DENV) infections have unpredictable clinical outcomes, ranging from asymptomatic or minor febrile illness to severe and fatal disease. The severity of dengue infection is at least partly related to the replacement of circulating DENV serotypes and/or genotypes. To describe clinical profiles of patients and the viral sequence diversity corresponding to non-severe and severe cases, we collected patient samples from 2018 to 2022 at Evercare Hospital Dhaka, Bangladesh. Serotyping of 495 cases and sequencing of 179 cases showed that the dominant serotype of DENV shifted from DENV2 in 2017 and 2018 to DENV3 in 2019. DENV3 persisted as the only representative serotype until 2022. Co-circulation of clades B and C of the DENV2 cosmopolitan genotype in 2017 was replaced by circulation of clade C alone in 2018 with all clones disappearing thereafter. DENV3 genotype I was first detected in 2017 and was the only genotype in circulation until 2022. We observed a high incidence of severe cases in 2019 when the DENV3 genotype I became the only virus in circulation. Phylogenetic analysis revealed clusters of severe cases in several different subclades of DENV3 genotype I. Thus, these serotype and genotype changes in DENV may explain the large dengue outbreaks and increased severity of the disease in 2019.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Dengue/epidemiology , Phylogeny , Bangladesh/epidemiology , Serogroup , Genotype
2.
Interdiscip Perspect Infect Dis ; 2022: 2109641, 2022.
Article in English | MEDLINE | ID: covidwho-2282845

ABSTRACT

With an increasing number of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequences gathered worldwide, we recognize that deletion mutants and nucleotide substitutions that may affect whole-genome sequencing are accumulating. Here, we propose an additional strategy for tiling PCR for whole-genome resequencing, which can make the pipeline robust for mutations at the primer annealing site by a redundant amplicon scheme. We further demonstrated that subtracting overrepresented amplicons from the multiplex PCR products reduced the bias of the next-generation sequencing (NGS) library, resulting in decreasing required sequencing reads per sample. We applied this sequencing strategy to clinical specimens collected in Bangladesh. More than 80% out of the 304 samples were successfully sequenced. Less than 5% were ambiguous nucleotides, and several known variants were detected. With the additional strategies presented here, we believe that whole-genome resequencing of SARS-CoV-2 from clinical samples can be optimized.

3.
Interdisciplinary perspectives on infectious diseases ; 2022, 2022.
Article in English | EuropePMC | ID: covidwho-2046818

ABSTRACT

With an increasing number of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequences gathered worldwide, we recognize that deletion mutants and nucleotide substitutions that may affect whole-genome sequencing are accumulating. Here, we propose an additional strategy for tiling PCR for whole-genome resequencing, which can make the pipeline robust for mutations at the primer annealing site by a redundant amplicon scheme. We further demonstrated that subtracting overrepresented amplicons from the multiplex PCR products reduced the bias of the next-generation sequencing (NGS) library, resulting in decreasing required sequencing reads per sample. We applied this sequencing strategy to clinical specimens collected in Bangladesh. More than 80% out of the 304 samples were successfully sequenced. Less than 5% were ambiguous nucleotides, and several known variants were detected. With the additional strategies presented here, we believe that whole-genome resequencing of SARS-CoV-2 from clinical samples can be optimized.

4.
Trop Med Infect Dis ; 7(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715734

ABSTRACT

Influenza is one of the most common respiratory virus infections. We analyzed hemagglutinin (HA) and neuraminidase (NA) gene segments of viruses isolated from influenza patients who visited Evercare Hospital Dhaka, Bangladesh, in early 2020 immediately before the coronavirus disease 2019 (COVID-19) pandemic. All of them were influenza virus type A (IAV) H1N1pdm. Sequence analysis of the HA segments of the virus strains isolated from the clinical specimens and the subsequent phylogenic analyses of the obtained sequences revealed that all of the H1N1pdm recent subclades 6B.1A5A + 187V/A, 6B.1A5A + 156K, and 6B.1A5A + 156K with K209M were already present in Bangladesh in January 2020. Molecular clock analysis results suggested that the subclade 6B.1A5A + 156K emerged in Denmark, Australia, or the United States in July 2019, while subclades 6B.1A5A + 187V/A and 6B.1A5A + 156K with K209M emerged in East Asia in April and September 2019, respectively. On the other hand, sequence analysis of NA segments showed that the viruses lacked the H275Y mutation that confers oseltamivir resistance. Since the number of influenza cases in Bangladesh is usually small between November and January, these results indicated that the IAV H1N1pdm had spread extremely rapidly without acquiring oseltamivir resistance during a time of active international flow of people before the COVID-19 pandemic.

5.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: covidwho-1702075

ABSTRACT

BACKGROUND: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines. METHODS: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air-liquid interface (ALI) (n = 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441). RESULTS: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes (p ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly (p < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly (p < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response. CONCLUSIONS: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions.


Subject(s)
Lung/metabolism , Respiratory Mucosa/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Bronchi/metabolism , Cytokines/metabolism , Gene Expression Profiling , Humans , Models, Biological , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
6.
FASEB Bioadv ; 4(6): 379-390, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1672269

ABSTRACT

Increased COVID-19 vaccine hesitancy presents a major hurdle in global efforts to contain the COVID-19 pandemic. This study was designed to estimate the prevalence of adverse events after the first dose of the Covishield (AstraZeneca) vaccine among physicians in Bangladesh. A cross-sectional study was conducted using an online questionnaire for physicians (n = 916) in Bangladesh. Physicians who received at least one dose of the COVID-19 vaccine were included. The study was carried out from April 12 to May 31, 2021. More than 58% of respondents (n = 533) reported one or more adverse events. Soreness of the injected arm (71.9%), tiredness (56.1%), fever (54.4%), soreness of muscles (48.4%), headache (41.5%) and sleeping more than usual (26.8%) were the most commonly reported adverse events. Most vaccine-related reactogenicities were reported by the younger cohorts (<45 years). The majority of respondents reported severity of reactogenicity as "mild," experienced on the day of vaccination, and lasting for 1-3 days. The most common reactogenicity was pain at the injection site; the second most common was tiredness. Almost half (49.2%) of the physicians took acetaminophen (paracetamol) to minimize the effects of vaccine reactogenicity. Multivariate logistic regression analyses showed that physicians with diabetes and hypertension (OR = 2.729 95% CI: 1.282-5.089) and asthma with other comorbidities (OR = 1.885 95% CI: 1.001-3.551) had a significantly higher risk of vaccine-related reactogenicities than physicians without comorbidities. Further safety studies with larger cohorts are required to monitor vaccine safety and provide assurance to potential vaccine recipients.

7.
World J Radiol ; 13(11): 354-370, 2021 Nov 28.
Article in English | MEDLINE | ID: covidwho-1572802

ABSTRACT

Radiology education and training is of paramount clinical importance given the prominence of medical imaging utilization in effective clinical practice. The incorporation of basic radiology in the medical curriculum has continued to evolve, focusing on teaching image interpretation skills, the appropriate ordering of radiological investigations, judicious use of ionizing radiation, and providing exposure to interventional radiology. Advancements in radiology have been driven by the digital revolution, which has, in turn, had a positive impact on radiology education and training. Upon the advent of the corona virus disease 2019 (COVID-19) pandemic, many training institutions and hospitals adhered to directives which advised rescheduling of non-urgent outpatient appointments. This inevitably impacted the workflow of the radiology department, which resulted in the reduction of clinical in-person case reviews and consultations, as well as in-person teaching sessions. Several medical schools and research centers completely suspended face-to-face academic activity. This led to challenges for medical teachers to complete the radiology syllabus while ensuring that teaching activities continued safely and effectively. As a result, online teaching platforms have virtually replaced didactic face-to-face lectures. Radiology educators also sought other strategies to incorporate interactive teaching sessions while adopting the e-learning approach, as they were cognizant of the limitations that this may have on students' clinical expertise. Migration to online methods to review live cases, journal clubs, simulation-based training, clinical interaction, and radiology examination protocolling are a few examples of successfully addressing the limitations in reduced clinical exposure. In this review paper, we discuss (1) The impact of the COVID-19 pandemic on radiology education, training, and practice; (2) Challenges and strategies involved in delivering online radiology education for undergraduates and postgraduates during the COVID-19 pandemic; and (3) Difference between the implementation of radiology education during the COVID-19 pandemic and pre-COVID-19 era.

8.
Microbiol Resour Announc ; 10(49): e0076421, 2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1559937

ABSTRACT

Genomic sequences from a complete SARS-CoV-2 open reading frame (ORF) were obtained from 24 patients diagnosed in May 2020 in Dhaka, Bangladesh. All sequences belonged to clade 20A or 20B, and none were variants of concern. Interestingly, one sequence showed a 161-nucleotide deletion in ORF7a.

9.
Mar Policy ; 126: 104422, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1062510

ABSTRACT

COVID-19 is now a major global health crisis, can lead to severe food crisis unless proper measures are taken. Though a number of scientific studies have addressed the possible impacts of COVID-19 in Bangladesh on variety of issues, problems and food crises associated with aquatic resources and communities are missing. Therefore, this study aimed at bridging the gap in the existing situation and challenges of COVID-19 by linking its impact on aquatic food sector and small-scale fisheries with dependent population. The study was conducted based on secondary data analysis and primary fieldwork. Secondary data focused on COVID-19 overview and number of confirmed, recovered and death cases in Bangladesh; at the same time its connection with small-scale fisheries, aquatic food production, demand and supply was analyzed. Community perceptions were elicited to present how the changes felt and how they affected aquatic food system and small-scale fisheries and found devastating impact. Sudden illness, reduced income, complication to start production and input collection, labor crisis, transportation abstraction, complexity in food supply, weak value chain, low consumer demand, rising commodity prices, creditor's pressure were identified as the primary affecting drivers. Dependent people felt the measures taken by the Government should be based on protecting both the health and food security. Scope of alternative income generating opportunities, rationing system, training and motivational program could improve the situation. The study provides insight into policies adopted by the policy makers to mitigate the effects of the pandemic on aquatic food sector and small-scale fisheries.

10.
Environ Dev Sustain ; 23(6): 9352-9366, 2021.
Article in English | MEDLINE | ID: covidwho-845731

ABSTRACT

We performed a global analysis with data from 149 countries to test whether temperature can explain the spatial variability of the spread rate and mortality of COVID-19 at the global scale. We performed partial correlation analysis and linear mixed effect modelling to evaluate the association of the spread rate and motility of COVID-19 with maximum, minimum, average temperatures and diurnal temperature variation (difference between daytime maximum and night-time minimum temperature) and other environmental and socio-economic parameters. After controlling the effect of the duration since the first positive case, partial correlation analysis revealed that temperature was not related with the spatial variability of the spread rate of COVID-19 at the global scale. Mortality was negatively related with temperature in the countries with high-income economies. In contrast, diurnal temperature variation was significantly and positively correlated with mortality in the low- and middle-income countries. Taking the country heterogeneity into account, mixed effect modelling revealed that inclusion of temperature as a fixed factor in the model significantly improved model skill predicting mortality in the low- and middle-income countries. Our analysis suggests that warm climate may reduce the mortality rate in high-income economies, but in low- and middle-income countries, high diurnal temperature variation may increase the mortality risk.

11.
Air Qual Atmos Health ; 14(3): 351-363, 2021.
Article in English | MEDLINE | ID: covidwho-746869

ABSTRACT

In Bangladesh, a nationwide lockdown was imposed on 26 March 2020, due to the COVID-19 pandemic. Due to restricted emissions, it was hypothesized that the air quality has been improved during lockdown throughout the country. The study is intended to assess the impact of nationwide lockdown measures on air quality in Bangladesh. We analyzed satellite data for four different air pollutants (NO2, SO2, CO, and O3) to assess the changes in the atmospheric concentrations of pollutants in major cities as well as across the country. In this study, the concentrations of NO2, SO2, CO, and O3 from 1 February to 30 May of the year 2019 and 2020 were analyzed. The average SO2 and NO2 concentrations were decreased by 43 and 40%, respectively, while tropospheric O3 were found to be increased with a maximum of > 7%. Among the major cities, Dhaka, Gazipur, Chattogram, and Narayanganj were found to be more influenced by the restricted emissions. In Dhaka, NO2 and SO2 concentrations were decreased approximately by 69 and 67%, respectively. Our analysis reveals that NO2 concentrations are highly correlated with the regional COVID-19 cases (r = 0.74). The study concludes that the lockdown measures significantly reduced air pollution because of reduced vehicular and industrial emissions in Bangladesh.

SELECTION OF CITATIONS
SEARCH DETAIL